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A variational approach is proposed to study some properties of the adiabatic
Holstein–Hubbard model which describes an assembly of fermionic charges
interacting with a static atomic lattice. The sum of the electronic energy and the
lattice elastic energy is proved to have minima with a many-polaron structure in
a certain domain of model parameters. Our analytical work consists in expand-
ing these energy minima from the zero electronic transfer limit which
remarkably holds for a finite amplitude of the onsite Hubbard repulsion and for
an unbounded lattice size.
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1. INTRODUCTION

The Holstein model involves an electron-phonon coupling in ref. 1 which
yields a polaron ground-state provided the amplitude of this coupling is
large enough compared with the electronic transfer integral. This result was
demonstrated by S. Aubry et al. in ref. 2 by assuming that the lattice modes
have a negligible kinetic energy. In this adiabatic regime, the description of
phonons is given by the static atomic displacements. During the last
decade, the so called small polaron of the adiabatic Holstein model has
been of a great interest to investigate some challenging problems such as:
charge density wave (3–5) and high critical temperature superconduc-
tivity (6–8). These studies were based on the rigorous Aubry’s proof (2) which
has been improved by C. Baesens and R. S. MacKay in ref. 9. In the anti-
integrable (AI) limit where the transfer integral of the fermionic charges is
zero (see in ref. 10 for a revue about the anti-integrability), the explicit forms



of some Hamiltonian eigenstates can be found and they are continuously
expanded with respect to the charge transfer. The main point of this
approach is the strong electron-phonon coupling assumption. In the oppo-
site limit of a weak coupling, the well-known BCS (11) and Gutzwiller (12)

ansatzs have been successfully developed in different models for a large
class of problem.
With no electron-electron interaction, except the Pauli principle, a

many-electron problem is usually reduced to find the eigenstates of a one-
particle Hamiltonian in which is introduced a chemical potential to fix the
charge carrier density (see refs. 2, 5 for the case of the Holstein model). The
ground state is thus given by the product of the one-particle eigenstates,
energies of which are smaller than the Fermi level. In some materials, the
interplay of the electron-electron Coulombian repulsion with the charge
screening may yield the onsite Hubbard coupling which breaks the one-
particle method. For our purposes, after extending the Holstein model with
the Hubbard interaction, it is yet possible to prove that some results of
refs. 2, 9 are still valid. To that aim, we develop a variational approach
where the energy functional Fad is obtained from the bracketing of the
adiabatic Holstein Hubbard Hamiltonian. For a weak charge transfer t,
minimizing this functional with respect to the static displacement fields
shows that some energy minima have a many-polaron structure. With the
L. norm, the atomic displacements of the many-polaron minima are
proved to be continuous with respect to the transfer t in the vicinity of the
AI limit. As a consequence, the Fad potential has some polaron minima in a
finite domain of the model parameters.

2. ADIABATIC HOLSTEIN HUBBARD MODEL

The Holstein Hubbard Hamiltonian is written as follows:

H=C
i
(w0(a

†
i ai)+gni(a

†
i+ai)+uni, ‘ ni, a −lni−T C

(i : j), s
C†i, sCj, s (2.1)

where the atomic lattice is mapped on Zd, i.e., i ¥ Zd with d={1, 2, 3}, the
anihilation operators at site i ¥ Zd for both phonons and fermions are ai
and Ci, respectively. The corresponding creation operators are written with
a † exponent. The ni operator is given by ;s=(‘ , a) C

†
i, sCi, s and the sum

; (i : j) is performed over the i neighboring site indexes. For simplicity, the
phonon contribution is only one optical phonon branch with frequency w0.
The electron-phonon coupling amplitude is g, the onsite Hubbard
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repulsion is scaled by u > 0 and the chemical potential is noted l. The
displacement and momentum operators at site (i) are given by:

ui=
(w0

4g
(a†i+ai) (2.2)

pi=i
2g
(w0
(a†i −ai) (2.3)

Substituting the phonon operators in Eq. (2.1) and dividing this equation
by the energy parameter E0=

8g2

(w0
give:

H=C
i

11
2
u2i+1

ui
2
−m2 ni+Uni ‘ ni a 2−t C

(i : j), s
C†i, sCj, s+

c

2
C
i
p2i (2.4)

where H is an adimensional Hamiltonian with the parameters:

U=
u

E0
t=
T
E0

c=
1
4
1(w0
2g
24 m=

l

E0
(2.5)

In the adiabatic limit, the coefficient c is neglected which is valid at large
electron-phonon coupling, i.e., the amplitude g is large compared with the
phonon zero point energy (w0/2. We obtain an adiabatic Hamiltonian:

Had=C
i

11
2
u2i+1

ui
2
−m2 ni+Uni ‘ ni a 2−t C

(i : j), s
C†i, sCj, s (2.6)

The displacement operators {ui} are now scalar variables that are noted
as a vector uF ¥S(N) where S(N)=RN is a real space, dimension of
which is equal to the unbounded number of lattice sites N. The adiabatic
Hamiltonian is a sum of an electronic Hamiltonian Hel and the lattice
elastic energy, i.e., Had=; i

1
2 u
2
i+Hel where

Hel=C
i

1ui
2
−m2 ni+Uni ‘ ni a −t C

(i : j), s
C†i, sCj, s (2.7)

The energy is now written in the variational form:

F(uF, k)=C
i

1
2 u
2
i+Ok| Hel |kP (2.8)

where |kP is a normalized electronic wave function for Nel fermion charges.
It is projected on the usual fermion basis, i.e., |kP=; n kn |enP where n is
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a Nel-multiple site-spin index and |enP=P(i, si) ¥ nC
†
i, si |”P. Differentiating

Eq. (2.8) with respect to ui and kn, the conditions for the local extrema are:

ui=−
Ok| ni |kP
2

(2.9)

Hel |kP=E |kP (2.10)

whereE is the Lagrange factor due to the k normalization. The Schroedinger
equation Eq. (2.10) implies that k is a Hel eigenstate with the associated
eigenvalue E which is the electronic energy. Assuming that k is a Hel
ground state for a given uF, the total energy is now given by the functional
Fad(uF)=; i

1
2 u
2
i+E(ui) which depends only on the displacement variables.

The k wave function may be non-unique.
Working with the L. norm in the suitable space, the F functional

and its derivatives with respect to ui and kn are continuous. The adiabatic
potential Fad is also continuous in the S(N) space but its first derivatives
are not necessary continuous as it can be shown in the AI limit.

3. THE ANTI-INTEGRABLE LIMIT

In the anti-integrable (AI) limit, the fermionic charge transfer is zero,
and thus the whole lattice sites are decoupled. The Hamiltonian Hel is a
sum of onsite Hamiltonian Hi and the Hel ground state k is a product of
onsite eigenstate pi with the energy Ei(ui):

Hi=1
ui
2
−m2 ni+Uni ‘ ni a (3.1)

Hi |piP=Ei(ui) |piP (3.2)

The constants (m, U) fix which type of state is the Hi ground state for a
given displacement ui. Selecting a set of Nel onsite states which have the
lowest energy Ei provides an electronic ground state k for Hel. The site i is
occupied either by a bipolaron, i.e., 2 electrons with opposite spin or by a
polaron, i.e., only 1 electron with spin up or down or else the site i is not
occupied. Using Eq. (2.9), the optimum displacement field is such that
ui=−1 for a bipolaron, or ui=−1/2 for a polaron or ui=0 if the site i is
unoccupied. In the case of a bipolaron onsite ground state with the
optimum displacement ui=−1, the Hi eigenvalues are (U−2m−1,
−m−1/2, 0). For a polaron, the Hi eigenvalues are (U−2m−1/2,
−m−1/4, 0) and for a vacuum site (U−2m, −m, 0). In order to determine
whether a polaron structure is a local Fad minimum, it is sufficient to test
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the Hi ground state for the different values of the onsite displacement
ui ¥ {−1, −1/2, 0}. For example, for m=−3/32 and U=3/8, the Hi
ground state is a bipolaron for ui=−1, a polaron for ui=−1/2, and it is a
vacuum for ui=0, so any displacement field consisting of an assembly of
ui ¥ {−1, −1/2, 0} is a Fad minimum. On the opposite, if m=−1/8 and
U=1, the configuration which contains at least a displacement ui=−1 are
not stable because the bipolaron is no longer the Hi ground state.
Let denote di the onsite spectrum gap between the ground state energy

and the first excited state energy. This gap is non-zero di > 0 except for
some specific values of (m, U). As a consequence for nearly all (m, U)
constants, the onsite ground state is not degenerate excepting the spin
degeneracy which occurs for the polaron.

4. EXPANSION OF POLARON STRUCTURES

As soon as the transfer integral t is non zero, one may guess that the
AI polaron states should still be Fad minima, at least for a certain range of
parameter. Here we propose a proof that confirms this guess. Our
demonstration is based on the Fad gradient study in the space of the
displacement configurationsS(N). The Fad gradient is given by:

fi=ui+
Ok| ni |kP
2

(4.1)

Let us introduce the following operators:

P1, i=ni ‘ ni a

P2, i=ni ‘ (1−ni a )

P3, i=ni a (1−ni ‘ )

P4, i=1−ni a −ni ‘+ni ‘ ni a

(4.2)

They verify ; a Pa, i |kP=|kP for all k state. We choose to write Pa, i |kP=
xa, i |ka, iP where the state ka, i is normalized and xa, i is a real positive scalar.
The gap di is assumed to have a lower bound d, i.e., di > d > 0 which is
valid for nearly all (m, U) constants. Then only one xa, i is non-zero at the
AI limit and it is equal to one, the corresponding index a is noted gi.
If gi is equal to either 1 or 4 then we note xgi=xa=gi, i. If gi is equal to
either 2 or 3, the site i is occupied by a polaron with a spin up or down.
In such a case, the onsite ground state is spin-degenerate and we note
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xgi=`x
2
2, i+x

2
3, i . As soon as the electronic transfer is non-zero, xgi variates

with t and it can be proved that (see Lemma 6):

(1−x2gi )
1
2 <

2ncn
1
2
s t

d−tnc(ns−2)
(4.3)

where nc is the number of the nearest neighbors, ns is the number of distinct
Hi eigenvalues. The inequality Eq. (4.3) implies the continuity of xgi with
respect to t in the vicinity of the AI limit.
The potential Fad is now derived with respect to ui:

fi=
“Fad
“ui
=ui+C

a, b
xa, i · xb, i ·Oka, i |

ni
2
|kb, iP (4.4)

As Pa, iPb, i=da, bPa, i where da, b is the Kroeneker symbol and as ni commutes
with the Pa, i operators:

fi=ui+
1
2 C
a

x2a, iOka, i | ni |ka, iP (4.5)

Let denote na, i=Oka, i | ni |ka, iP and let write ui=ui(0)+ri where ui(0) is
the onsite displacement at t=0. The Eq. (4.5) is rewritten as follows

fi=ri−
ngi
2
(1−x2gi )+

1
2

C
a ] gi

x2a, ina, i (4.6)

where we used Eq. (2.9) in the AI limit to find ui(0)=−
ngi
2 . The sum in the

right hand side of Eq. (4.6) is performed over the indexes a ] gi for
gi={1, 4} and over the indexes a={1, 4} for gi={2, 3}.
The scalar product rF ·fF is now detailed:

rF ·fF=C
i
r2i+ri ·1−(1−x2gi )

ngi
2
+ C
a ] gi

x2a, i
na, i
2
2 (4.7)

Focusing on the terms of the right hand side sum, some simple arguments
give the following inequalities:

ri · (1−x
2
gi )
ngi
2
< sup

i
(1−x2gi ) |ri | (4.8)

ri · C
a ] gi

x2a, i
na, i
2
> − sup

i
(1−x2gi ) |ri | (4.9)
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So each term of the sum in the Eq. (4.7) verifies

r2i+ri ·1−(1−x2gi )
ngi
2
+ C
a ] gi

x2a, i
na, i
2
2 > r2i −2 |ri | · sup

i
(1−x2gi ) (4.10)

which is positive if |ri | > 2 sup
i
(1−x2gi ) and with Eq. (4.3) it is equivalent

to |ri | > RAI with writing:

RAI=
8n2cnst

2

(d−tnc(ns−1))2
(4.11)

Defining the subset B(R) such as uF ¥B(R) if |ui(0)−ui | < R for all i index,
the boundary of B(R) is denoted B(R). For any uF ¥ B(R > RAI), the
product (uF(0)−uF) ·fF(uF) is positive and thus there is at least one displacement
configuration uFmin(t) ¥B(RAI) which is a local minimum of Fad. As a
consequence, the potential Fad has a minimum in the uF(0) vicinity at most
at a RAI distance in the L. norm meaning, i.e., supi |umin, i(t)−ui(0)| < RAI.

5. CONCLUSION

The present proof holds for any displacement field which is a
minimum of the adiabatic potential Fad such as the gap d ] 0. For nearly
all (m, U) values, the displacements of the many-polaron minima vary con-
tinuously with respect to the fermionic charge transfer t in the vicinity of
the AI limit where t=0. So it is about the total energy of these minima
because of the Fad continuity with respect to the displacements. Conse-
quently, the adiabatic potential has some minima with a many-polaron
structure for a finite domain of the model parameters. Nevertheless, the
absolute minimum of Fad, i.e., the ground state of the adiabatic Holstein–
Hubbard model cannot yet be determined for all the parameters. To that
aim, a numerical investigation might be required but no idea emerges to
tackle the case of a non zero Hubbard coupling with many charge carriers,
except a meanfield theory as proposed in ref. 2 or a small electron number
model. The latter possibility is presented in refs. 6 and 7 where the phase
diagram is calculated for 2 electrons. For a two-dimensional atomic lattice,
a critical point where 3 different types of bipolaron coexist was found far
from any trivial limit. In this specific region, because of the bipolaron
degeneracy, the bipolaron tunneling (or equivalently the inverse of the
ground state effective mass) is very sensitive to the quantum fluctuations
which are yielded by a non-zero c (Eq. (2.5)) ref. 8. Around the
critical point, both the bipolaron mobility and its binding energy reach
100K with realistic input parameters (Eq. (2.5)). This result allowed some
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conjectures about the mechanism which yields the high critical temperature
superconductivity of cuprates.
The present study can be extended straighforwardly for a non harmo-

nic phonon potential as for an atomic lattice embedded in an external
magnetic field. However an extension to a different electron-phonon
coupling such as the SSH model (13) might have non trivial anti-integrable
limits which makes our arguments much less efficient.

6. LEMMA

We choose the Hi ground state energy as the energy reference. We
shall assume the non-degeneracy of this ground state so only one projector
Pgi is such as HiPgi |kP=0 for all k. As |kP=; a Pa, i |kP we have |kP=
; a xa, i |ka, iP where the normalized states ka, i and xa, i |ka, iP=Pa, i |kP are
introduced which implies ; a |xa, i |2=1. It is possible to choose the ka, i
such as the xa, i are real positive for all a. One notes Ki=; a Pa, iHelPa, i and
Hı̄=Hel−Hi+t; i : j, s C

+
i, sCj, s+C

+
j, sCi, s where (i : j) are the i neighbor-

ing sites. As Pa, i[C
+
i, sCj, s+C

+
j, sCi, s] Pa, i=0 and as Hı̄ and Hi commute

with the projectors Pa, i:

Ki=Hı̄+Hi (6.1)

Let F0 be the Ki ground state with energy E0. Using Pa, iPb, i=da, bPa, i
where da, b is the Kroeneker symbol, then KiPa, i |F0P=Pa, iKi |F0P=
E0Pa, i |F0P.
As Hı̄ and Hi are decoupled, the state f0 is a product of the Hı̄ ground

state and the Hi ground state. It follows that Pgi |F0P=|F0P and Pa ] gi |F0P
=0 and it is now easy to establish that

OF0 | Hı̄=|F0P=E0 (6.2)

OF0 | Hel |F0P=OF0 | Ki |F0P=E0 (6.3)

Okgi | Ki |kgiP \ E0 (6.4)

From the identity P2a, i=Pa, i, one deduces that for all k, |ka, iP=
Pa, i |kP, Pa, i |ka, iP=|ka, iP and Oka, i | Ki |ka, iP=Oka, i | Hel |ka, iP. If di is the
first excited state energy of Hi:

Oka ] gi, i | Hi |ka ] gi, iP \ di (6.5)

Oka ] gi, i | Ki |ka ] gi, iP=Oka ] gi, i | Hı̄ |ka ] gi, iP+Oka ] gi, i | Hi |ka ] gi, iP (6.6)

Oka ] gi, i | Ki |ka ] gi, iP \ Oka ] gi, i | Hı̄ |ka ] gi, iP+di \ E0+di (6.7)
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The previous results Eq. (6.7) is necessary valid if k is the Hel ground state:

Oka ] gi, i | Ki |ka ] gi, iP \ E0+di (6.8)

MultiplyingHel by the identity (; a Pa, i=Id) gives:

Hel=Ki+ C
a ] aŒ

Pa, iHelPaŒ, i (6.9)

and bracketing by k:

Ok| Hel |kP=C
a

x2a, iOka, i | Ki |ka, iP+C
a ] b

xa, ixb, iOka, i | Hel |kb, iP (6.10)

As ni, s and nj, sŒ commute with each other for all suffix i, j, s and s −, and as
Pa, iPb ] a, i=0:

C
a ] b

xa, ixb, iOka, i | Hel |kb, iP=−t C
a ] b

xa, ixb, iOka, i | D |kb, iP (6.11)

One deduces a simplification of the Eq. (6.10):

Ok| Hel |kP=C
a

x2a, iOka, i | Ki |ka, iP−t C
a ] b

xa, ixb, iOka, i | D |kb, iP (6.12)

and combining the inequalities (6.4, 6.8):

Ok| Hel |kP \ E0+di C
a ] gi

x2a, i−t C
a ] b

xa, ixb, iOka, i | D |kb, iP (6.13)

As we choose to map the atomic lattice on Zd, the number of first
neighboring sites is nc=2d. With Eq. (6.3), one now writes the set of
following equations where E=Ok| Hel |kP:

OF0 | Hel |F0P \ E

E0 \ EQ E0 \ E \ E0+di C
a ] gi

x2a, i−t C
a ] b

xa, ixb, iOka, i | D |kb, iP

Oka, i | D |kb, iP=Oka, i | C
i : j, s
C+i, sCj, s+C

+
j, sCi, s |kb, iP [ 2nc

di C
a ] gi

x2a, i [ t C
a ] b

xa, ixb, iOka, i | D |kb, iP
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di(1−x
2
gi ) [ 2nct C

a ] b

xa, ixb, i

(1−x2gi ) di [ nct 51C
a

xa, i 2
2

−C
a

x2a, i6

(1−x2gi ) di [ nct 51C
a

xa, i 2
2

−16

(1−x2gi ) di [ nct 51 C
a ] g
xa, i+xgi 2

2

−16 (6.14)

The Cauchy–Schwartz inequality applied to the sum ; a ] g xa, i gives:

C
a ] g
xa, i [` C

a ] gi

1` C
a ] gi

x2a, i

C
a ] gi

xa, i [`ns `1−x
2
gi

where ns=3 is the maximum number of distinct Hi eigenvalues. With
Eq. (6.14), it follows that

(1−x2gi ) di [ nct[(n
1
2
s (1−x

2
gi )

1
2+xgi )

2−1] (6.15)

and it is now easy to obtain:

(1−x2gi )
1
2 <

2ncn
1
2 t

di−nct(ns−1)
(6.16)

The latest result holds for the case of a non-degenerate Hi ground
state. Regarding the case of a polaron at site i, the atomic orbital is
occupied by 1 electron with either spin up or spin down. The onsite ground
state is spin-degenerate but the same arguments as for the non-degenerate
case can be used to establish the following inequality:

(1−x2, i
2
s −x

2
3, i)

1
2 <
2nc(ns−1)

1
2 t

di−nct(ns−2)
(6.17)

Let write x2gi=x
2
2, i+x

2
3, i such as this inequality is now written:

(1−x2g, i)
1
2 <
2nc(ns−1)

1
2 t

di−nct(ns−2)
(6.18)
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If we now assume that there is a lower bound d for the onsite gap
di > d > 0, then the combination of the Eqs. (6.16, 6.18) gives for all sites i:

(1−x2gi )
1
2 <

2ncns
1
2 t

d−nct(ns−2)
(6.19)
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